
Transformers – Part 2
DL4DS – Spring 2025

DS542 Gardos – Understanding Deep Learning, Other Content Cited 1

https://udlbook.github.io/udlbook/

Today

• Recap of Transformers Part 1
• Next token selection
• Transformers for Long Sequences
• Tokenization and Word Embedding

2

Recap From Part 1

• Motivation
• Dot-product self-attention
• Applying Self-Attention
• The Transformer Architecture
• Three Types of NLP Transformer

Models
• Encoder
• Decoder
• Encoder-Decoder

3

Transformers

• Motivation
• Dot-product self-attention
• Applying Self-Attention
• The Transformer Architecture
• Three Types of NLP Transformer Models

4

Transformers

• Motivation
• Dot-product self-attention
• Applying Self-Attention
• The Transformer Architecture
• Three Types of NLP Transformer Models

• Encoder
• Decoder
• Encoder-Decoder

5

6

Which model flavor do you use for Named
Entity Recognition?

ⓘ Start presenting to display the poll results on this slide.

7

Which model flavor do you use for
language translation?

ⓘ Start presenting to display the poll results on this slide.

8

Which model flavor do you use for generating text,
question answering, AI assistant?

ⓘ Start presenting to display the poll results on this slide.

3 Types of Transformer Models

1. Encoder – transforms text embeddings into representations that
support variety of tasks (e.g. sentiment analysis, classification)
v Model Example: BERT

2. Decoder – predicts the next token to continue the input text (e.g.
ChatGPT, AI assistants)
v Model Example: GPT4, GPT4

3. Encoder-Decoder – used in sequence-to-sequence tasks, where one
text string is converted to another (e.g. machine translation)

9

Next Token Selection

10

Next Token Selection

11

• Recall: output is a 𝒱 ×1 vector of probabilities
• How should we pick the next token?
• Trade off between accuracy and diversity

Decoder

Encoder - Decoder

𝒱 ×1

𝒱 ×1

Next Token Selection
Recall: output is a 𝒱 ×1 vector of probabilities

Selectin methods:
• Greedy selection
• Top-K
• Nucleus
• Beam search

12

Next Token Selection – Greedy
Pick most likely token (greedy)

Simple to implement. Just take the max().

Might pick first token 𝑦!, but then there is no 𝑦" where Pr 𝑦" 𝑦!)
is high.
Result is generic and predictable. Same output for a given input
context.

13

in PyTorch
outputs = model(inputs)
value, index = outputs.max(1)

Next Token Selection -- Sampling
Sample from the probability distribution

Get a bit more diversity in the output

Will occasionally sample from the long tail of the distribution,
producing some unlikely word combinations

14

Next Token Selection – Top K Sampling

1. Generate the probability vector as usual
2. Sort tokens by likelihood
3. Discard all but top k most probable words
4. Renormalize the probabilities to be valid probability distribution

(e.g. sum to 1)
5. Sample from the new distribution

Diversifies word selection
Depends on the distribution. Could be low variance, reducing diversity

15

Next Token Selection – Nucleus Sampling

Instead of keeping top-k, keep the top p percent of the
probability mass.

Choose from the smallest set from the vocabulary such
that

Diversifies word selection with less dependence on nature
of distribution.
Depends on the distribution. Could be low variance,
reducing diversity

16

Next Token Selection – Beam Search
Commonly used in machine
translation
Maintain multiple output choices
and then choose best combinations
later via tree search
V = {yes, ok, <eos>}
We want to maximize 𝑝 𝑡", 𝑡#, 𝑡$.

Greedy: 0.5×0.4×1.0 = 0.20
Optimal: 0.4×0.7×1.0 = 0.28

17D. Jurafsky and J. H. Martin, Speech and Language Processing. 2024. https://web.stanford.edu/~jurafsky/slpdraft/

https://web.stanford.edu/~jurafsky/slpdraft/

Next Token Selection – Beam Search
But we can’t exhaustively search the entire vocabulary
Keep k tokens (beam width) at each step

18D. Jurafsky and J. H. Martin, Speech and Language Processing. 2024. https://web.stanford.edu/~jurafsky/slpdraft/

https://web.stanford.edu/~jurafsky/slpdraft/

Next Token Selection – Beam Search

19D. Jurafsky and J. H. Martin, Speech and Language Processing. 2024. https://web.stanford.edu/~jurafsky/slpdraft/

Keep k tokens at each step

E.g. k = 2

Prune to k at each step

BOS: Beginning of
Sentence token

https://web.stanford.edu/~jurafsky/slpdraft/

Next Token Selection – Beam Search (k=2)

20D. Jurafsky and J. H. Martin, Speech and Language Processing. 2024. https://web.stanford.edu/~jurafsky/slpdraft/

Calculated with log
probabilities and add Pick the top 2 tokens.

Cumulative
log probs

https://web.stanford.edu/~jurafsky/slpdraft/

Next Token Selection – Beam Search (k=2)

21D. Jurafsky and J. H. Martin, Speech and Language Processing. 2024. https://web.stanford.edu/~jurafsky/slpdraft/

Then pick the next 2 from each
of the first 2 tokens.

Calc cumulative log probs:
-1.6 -.69 = -2.3
-1.6 -2.3 = -3.9

-.92 -.69 = -1.6
-.92 -1.2 = -2.1

Pick the 1st token with highest
log probability.

https://web.stanford.edu/~jurafsky/slpdraft/

Next Token Selection – Beam Search (k=2)

22D. Jurafsky and J. H. Martin, Speech and Language Processing. 2024. https://web.stanford.edu/~jurafsky/slpdraft/

Then generate the next
2 tokens from each of
the y2 and pick the 2
highest log probability
paths.

https://web.stanford.edu/~jurafsky/slpdraft/

Next Token Selection – Beam Search (k=2)

23D. Jurafsky and J. H. Martin, Speech and Language Processing. 2024. https://web.stanford.edu/~jurafsky/slpdraft/

Continue to predict
the next 2 highest
from each of the y3.

We hit EOS, but still
have a lower
cumulative prob path

https://web.stanford.edu/~jurafsky/slpdraft/

Next Token Selection – Beam Search

24D. Jurafsky and J. H. Martin, Speech and Language Processing. 2024. https://web.stanford.edu/~jurafsky/slpdraft/

We have 2 paths randomly
terminating at EOS with
same cumulative log
probabilities.

Randomly pick 1.

https://web.stanford.edu/~jurafsky/slpdraft/

Next Token Selection

• Greedy selection
• Top-K
• Nucleus
• Beam search

25

Transformers for Long Sequences

26

Context Length of LLMs

27

Model Context Length

Llama 2 32K

GPT4 32K

GPT-4 Turbo,
Llama 3.1

128K

Claude 3.5
Sonnet

200K

Google Gemini
1.5 Pro

Millions

https://cobusgreyling.medium.com/rag-llm-context-size-6728a2f44beb

https://cobusgreyling.medium.com/rag-llm-context-size-6728a2f44beb

Attention Matrix

28

N

N

Scales quadratically with
sequence length N, e.g. N2.

Masked Attention

29

N

N

~1/2 the interactions but
still scales quadratically

Use Convolutional Structure in Attention

30

Encoder
(non-causal)

Decoder
(causal)

Dilated Convolutional Structures

31

Encoder Decoder

Encoder Decoder

Convolution with stride.

Have some tokens interact globally

32

EncoderDecoder

Tokenization and Word
Embedding

33

NLP Preprocessing Pipeline

34

Tokenizer Learned
Embeddings Transformer

Preprocessing: Tokenization and Embedding

Transformers don’t work on character string directly, but rather on vectors.

The character strings must be converted to vectors

<Some text string>

Tokenizer

Tokenizer chooses input “units”, e.g. words, sub-words, characters via tokenizer
training

In tokenizer training, commonly occurring substrings are greedily merged based on
their frequency, starting with character pairs

35

Encode Decode
character (e.g.

Unicode)
strings

token
IDs

character (e.g.
Unicode)

strings

Tokenization Issues
“A lot of the issues that may look like issues with the neural network architecture actually trace back to tokenization. Here are
just a few examples” – Andrej Karpathy

• Why can't LLM spell words? Tokenization.
• Why can't LLM do super simple string processing tasks like reversing a string? Tokenization.
• Why is LLM worse at non-English languages (e.g. Japanese)? Tokenization.
• Why is LLM bad at simple arithmetic? Tokenization.

• Why did GPT-2 have more than necessary trouble coding in Python? Tokenization.
• Why did my LLM abruptly halt when it sees the string "<|endoftext|>"? Tokenization.
• What is this weird warning I get about a "trailing whitespace"? Tokenization.
• Why did the LLM break if I ask it about "SolidGoldMagikarp"? Tokenization.
• Why should I prefer to use YAML over JSON with LLMs? Tokenization.

• Why is LLM not actually end-to-end language modeling? Tokenization.
• What is the real root of suffering? Tokenization.

36https://github.com/karpathy/minbpe/blob/master/lecture.md

https://github.com/karpathy/minbpe/blob/master/lecture.md

Unicode Standard and UTF-8
• Unicode – variable length character encoding standard. currently defines 149,813

characters and 161 scripts, including emoji, symbols, etc.
• Unicode Codepoint – can represent up to 17×2%& = 1,114,112 entries. e.g.

U+0000 – U+10FFFF in hexadecimal
• Unicode Transformation Standard (e.g. UTF-8) – is a variable length encoding

using one to four bytes
• First 128 chars same as ASCII

37

https://en.wikipedia.org/wiki/Unicode
https://en.wikipedia.org/wiki/UTF-8

Covers ASCII

Basic Multilingual Plane including Chinese, Japanese and Korean characters

Covers remainder of almost all Latin-script alphabets

Emoji, historic scripts, math symbols

https://en.wikipedia.org/wiki/Unicode
https://en.wikipedia.org/wiki/UTF-8

Tokenizer
Two common tokenizers:
• Byte Pair Encoding (BPE) – Used by OpenAI GPT2, GPT4, etc.

• The BPE algorithm is "byte-level" because it runs on UTF-8 encoded strings.
• This algorithm was popularized for LLMs by the GPT-2 paper and the

associated GPT-2 code release from OpenAI. Sennrich et al. 2015 is cited as
the original reference for the use of BPE in NLP applications. Today, all
modern LLMs (e.g. GPT, Llama, Mistral) use this algorithm to train their
tokenizers.*

• sentencepiece
• (e.g. Llama, Mistral) use sentencepiece instead. Primary difference being that

sentencepiece runs BPE directly on Unicode code points instead of on UTF-8
encoded bytes.

38* https://github.com/karpathy/minbpe/tree/master

https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://github.com/openai/gpt-2
https://arxiv.org/abs/1508.07909
https://github.com/google/sentencepiece
https://github.com/karpathy/minbpe/tree/master

BPE Pseudocode
Initialize vocabulary with individual characters in
the text and their frequencies
While desired vocabulary size not reached:
 Identify the most frequent pair of adjacent
 tokens/characters in the vocabulary
 Merge this pair to form a new token
 Update the vocabulary with this new token
 Recalculate frequencies of all tokens including
 the new token
Return the final vocabulary

39

Enforce a Token Split Pattern

• Do not allow tokens to merge across certain characters or patterns
• Common contraction endings: ‘ll, ‘ve, ‘re
• Match words with a leading space
• Match numeric sequences
• carriage returns, new lines

40

GPT4_SPLIT_PATTERN = r"""'(?i:[sdmt]|ll|ve|re)|[^\r\n\p{L}\p{N}]?+\p{L}+|\p{N}{1,3}|
?[^\s\p{L}\p{N}]++[\r\n]*|\s*[\r\n]|\s+(?!\S)|\s+"""

GPT2_SPLIT_PATTERN = r"""'(?:[sdmt]|ll|ve|re)| ?\p{L}+| ?\p{N}+|
?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+"""

GPT4 Tokenizer

41
https://tiktokenizer.vercel.app/

cl100k_base is the GPT4 tokenizer

https://tiktokenizer.vercel.app/

GPT2 Tokenizer

42
https://tiktokenizer.vercel.app/

You can see some issues with the
GPT2 tokenizer with respect to
python code

https://tiktokenizer.vercel.app/

GPT4 Tokenizer

43
https://tiktokenizer.vercel.app/

Issues are improved with GPT4
tokenizer

https://tiktokenizer.vercel.app/

44

Byte Pair Encoding (BPE) Example

Minimal starting vocabulary of subset of lower
case latin alphabet and space `_`.

45

Byte Pair Encoding (BPE) Example

Find the most frequent pair of adjacent tokens,
`se`, in this case and form new token.

46

Byte Pair Encoding (BPE) Example

Next most frequent pair of tokens is `e_`

47

Byte Pair Encoding (BPE) Example

Continue until you hit your vocabulary size limit.

48

Byte Pair Encoding (BPE) Example

49

Generally # of tokens increases and
then starts decreasing after
continuing to merge tokens

Learned Embeddings

• After the tokenizer, you have an updated ”vocabulary” indexed by token ID
• Next step is to translate the token into an embedding vector
• Translation is done via a linear layer which is typically learned with the rest of the

transformer model

• Special layer definition, likely to exploit sparsity of input

50

Tokenizer
Learned

Embeddings:
Linear Layer

Transformer
<Some text string>

self.embedding = nn.Embedding(vocab_size, embedding_dim)

Embeddings Output

”One hot encoding”

51

N 𝒱

In this example, we are
assuming a token is simply a
complete word

• Typical embedding size, D, is 1024
• Typical vocabulary size, 𝒱 , is 30,000
• So 30M parameters just for this matrix!

Next Jupyter Notebook assignment

• will release shortly

Øself-attention
Ømulti-head self-attention

52

Next Feedback

• Image Transformers
• Multimodal Transformers
• …

53ChatGPT

Link

https://docs.google.com/forms/d/e/1FAIpQLSfrbURkg6kpBTcZXCy_m622xuWEB0-eP4mYUSiQJfqkf7-0QQ/viewform?usp=header

